An Adaptive Wavelet Method for Fluid–structure Interaction

نویسندگان

  • N. Kevlahan
  • O. V. Vasilyev
چکیده

One of the most practically important problems in aerodynamics is calculating moderate to high Reynolds number flow around solid obstacles of arbitrary shape. This problem arises in aerodynamics (e.g. turbulent flow over the wings and fuselage of airplanes), in off-shore drilling (e.g. water flow around riser tubes transporting oil from the sea bed to the surface), and in the wind engineering of buildings. In each case the primary difficulty arises from the need to calculate turbulent or transitional flow with boundary conditions on complicated domains. In addition, it may be important to allow for the obstacle to move or deform in response to the applied fluid forces (this motion in turn affects the flow). In this paper we propose combining two mathematical approaches to calculate fluid–structure interaction numerically. The first technique, the adaptive wavelet method, tackles the problem of efficiently resolving a high Reynolds number flow in complicated geometries (where grid resolution should depend both on time and location). The second technique, Brinkman penalization, addresses the problem of efficiently implementing solid boundaries of arbitrary complexity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Optimized computational Afin image algorithm using combination of update coefficients and wavelet packet conversion

Updating Optimal Coefficients and Selected Observations Affine Projection is an effective way to reduce the computational and power consumption of this algorithm in the application of adaptive filters. On the other hand, the calculation of this algorithm can be reduced by using subbands and applying the concept of filtering the Set-Membership in each subband. Considering these concepts, the fir...

متن کامل

Presenting a Modified SPH Algorithm for Numerical Studies of Fluid-Structure Interaction Problems

A modified Smoothed Particle Hydrodynamics (SPH) method is proposed for fluid-structure interaction (FSI) problems especially, in cases which FSI is combined with solid-rigid contacts. In current work, the modification of the utilized SPH concerns on removing the artificial viscosities and the artificial stresses (which such terms are commonly used to eliminate the effects of tensile and numeri...

متن کامل

A Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network

Abstract   Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...

متن کامل

AN ADAPTIVE WAVELET SOLUTION TO GENERALIZED STOKES PROBLEM

In this paper we will present an adaptive wavelet scheme to solvethe generalized Stokes problem. Using divergence free wavelets, theproblem is transformed into an equivalent matrix vector system, thatleads to a positive definite system of reduced size for thevelocity. This system is solved iteratively, where the applicationof the infinite stiffness matrix, that is sufficiently compressible,is r...

متن کامل

An Adaptive Physics-Based Method for the Solution of One-Dimensional Wave Motion Problems

In this paper, an adaptive physics-based method is developed for solving wave motion problems in one dimension (i.e., wave propagation in strings, rods and beams). The solution of the problem includes two main parts. In the first part, after discretization of the domain, a physics-based method is developed considering the conservation of mass and the balance of momentum. In the second part, ada...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001